Rhind Mathematical Papyrus


Rhind 1 / Rhind 2 / Rhind 3 / Rhind 4 / Rhind 5 / Rhind 6 / Rhind 7 / Rhind 8

How much is 184 times 2 '6 '7 times 5 '3 '5 ?

 

  184 times 2 '6 '7  equals   368   31   26  =   425

  425 times 5 '3 '5  equals  2125  142   85  =  2352 *

 

  184 times 5 '3 '5  equals   920   61   37  =  1018

 1018 times 2 '6 '7  equals  2036  170  145  =  2351 *

 

  average result  2351 '2  (mistake less than '10)

 

How much is 317 times 3 '3 '11 times 4 '5 '13?

 

  317 times 3 '3 '11  equals   951  106   29  =  1086

 1086 times 4 '5 '13  equals  4344  217   84  =  4645

 

  317 times 4 '5 '13  equals  1268   63   24  =  1355

 1355 times 3 '3 '11  equals  4065  452  123  =  4640

 

  average result  4642 '2  (mistake less than '30)

 

How much is 5 '3 '7 '11 by 5 '3 '7 '11? This time we multiply the product by a factor of 100 and then divide the result by 100 again:

 

  100 times 5 '3 '7 '11  equals   500   33  14   9  =   556

  556 times 5 '3 '7 '11  equals  2780  185  79  51  =  3095

 

  3095 / 100 = practically 31  (mistake less than '135)

 

 

 

A calculation of interest

 

Vizier Milo (a former incarnation of Milo Gardner, whom I shall mention later :-) saved 68,954 Egyptian Dollars and brings the money to the First City Bank of Amarna, which offers interest at '101 '202 '303 '606 (2/101, a little more than 2 percent). How will Milo's fortune rise in the coming years?

 

Year 1   fortune  68,954   interest  683 341 228 114  =  1,366

year 2   fortune  70,320   interest  696 348 232 116  =  1,392

year 3   fortune  71,712   interest  710 355 237 118  =  1'420

year 4   fortune  73,132   interest  724 362 241 121  =  1,448

year 5   fortune  74,580   interest  738 369 246 123  =  1,476

 

year 6   fortune  76,056   interest  753 377 251 126  =  1,507

year 7   fortune  77,563   interest  768 384 256 128  =  1,536

year 8   fortune  79,099   interest  783 392 261 131  =  1,567

year 9   fortune  80,666   interest  799 399 266 133  =  1,597

year 10  fortune  82,263   interest  814 407 271 136  =  1,628

 

year 11  fortune  83,891   interest  831 415 277 138  =  1,661

year 12  fortune  85,552   interest  847 424 282 141  =  1,694

year 13  fortune  87,246   interest  864 432 288 144  =  1,728

year 14  fortune  88,974   interest  881 440 294 147  =  1,762

 

YEAR 15  FORTUNE  90,736 DOLLARS  

 

And the exact value?

 

68954 x (1 + 2/101) exp 14 = 68954 x 1.3158971... = 90736.365...

 

Although we have rounded all numbers, the margin of error is not even 40 cents. And if we begin with 6,895,400 cents instead of 68,954 dollars, the mistake would be less than 4 (four) cents.

 

 

 

Playing with beans

 

 

     o o o       o o o o   

    o o o o      o o o o     o o o o o o

   o o o o o     o o o o     o o o o o o     oooooooooooo

 

   3 + 4 + 5  =   3 x 4   =     2 x 6     =     1 x 12

 

 

   oooooooooooo      12         or    1

   oooooo oooooo      6+6       or    1/2 + 1/2

   oooooo oo oooo     6+2+4     or    1/2 + 1/6 + 1/3

   oooooo oo o ooo    6+2+1+3   or    1/2 + 1/6 + 1/12 + 1/4

 

 

1/1 = '1   1/2 = '2   1/3 = '3   1/4 = '4   1/6 = '6   1/12 = '12

 

 

    1 = '1                 1 = '1

    1 = '2 '2              1 = '1x2 '2

    1 = '2 '6 '3           1 = '1x2 '2x3 '3

    1 = '2 '6 '12 '4       1 = '1x2 '2x3 '3x4 '4

 

 

 

RHIND MATHEMATICAL PAPYRUS, duplations and conversions

 

The famous Rhind Mathematical Papyrus was written around 1650 BC, and represents a copy of a lost scroll dated around 1850 BC. At the begin of the RMP are found divisions of 2 by the odd numbers from 5 up to 101. Examples:

 

  "5 = '3 '15       (2/5 = 1/3 + 1/15)

  "7 = '4 '28       (2/7 = 1/4 + 1/28)

  "9 = '6 '18       (2/9 = 1/6 + 1/18)

 "11 = '6 '66

 "13 = '8 '52 '104

 "19 = '12 '76 '114

 "35 = '30 '42

 "43 = '42 '86 '129 '301

 "67 = '40 '268 '670

 "91 = '70 '130

 "95 = '60 '380 '570

 "99 = '66 '198

"101 = '101 '202 '303 '606

 

The calculations are carried out as follows. If you wish to divide 2 by any number a, note the numbers 1 and a. Divide them by handy numbers until you get a number b that is smaller than 2. Now subtract number b from 2 and complete your series. Examples:

 

  1         9  (number a)

  '3        3

  '6        1 '2  (number b)

 

  2 minus 1'2 equals '2

 

  '18       '2

 

  "9 = '6 '18  (since 1'2 '2 equals 2)

 

 

  1         19

  '3         6 '3       (divided by 3)

  '6         3 '6       (divided by 2)

  '12        1 '2 '12   (divided by 2)

 

  2 minus 1'2'12 equals ??

 

 24 minus 12+6+1 equals 5 or 3 + 2    (multiplied by 12)

 

  2 minus 1'2'12 equals      '4  '6   (divided by 12)

 

  '76        '4

  '114       '6

 

  "19 = '12 '76 '114  (since 1'2'12 '4 '6 equals 2)

 

 

  1          35

  '5          7

  '15         2 '3

  '30         1 '6

 

  2 minus 1'6 equals '2 '3

 

   35 divided by 2+3 equals 7 / remainder '2x3x7 equals '42

 

  "35 = '30 '42

 

 

   1        43

  '2        21 '2   (divided by 2)

  '6         7 '6   (divided by 3)

  '42        1 '42  (divided by 7)

 

  2 minus 1'42 equals '2 '3 '7

 

  '86        '2

  '129       '3

  '301       '7

 

  "43 = '42 '86 '129 '301  (since 1'42 '2 '3 '7 equals 2)

 

 

  1         91

  '7        13

  '14        6 '2

  '70        1 '5 '10

 

  2 minus 1'5'10 equals '2 '5

 

   91 divided by 2+5 equals 13 / remainder '2x5x13 or '130

 

  "91 = '70 '130

 

 

  1        93

  '31       3

  '62       1'2

 

  2 minus 1'2 equals '2

 

  '186      '2

 

  "93 = '62 '186  (since 1'2 '2 equals 2)

 

 

  1        101

  '101       1

 

  2 minus 1 equals '2 '3 '6

 

  '202   '2      '303   '3      '606   '6

 

  "101 = '101 '202 '303 '606  (since 1 '2 '3 '6 equals 2)

 

 

 

Down under algebra

 

Beginners may carry out all divisions from 2/5 to 2/101 and in so doing learn how to work with unit fraction series. Advanced learners may go a step further and look out for number patterns providing the same conversions:

 

   1  =  '2 '1x2  =  '2 '2

  '2  =  '3 '2x3  =  '3 '6

  '3  =  '4 '3x4  =  '4 '12

  '4  =  '5 '4x5  =  '5 '20

  '5  =  '6 '5x6  =  '6 '30

  '6  =  '7 '6x7  =  '7 '42

  '7  =  '8 '7x8  =  '8 '56      general form: 'a = 'a+1 'aa+a

 

   1  =  '2 '2  --------  "1 = '1 '1

  '2  =  '3 '6

  '3  =  '4 '12  -------  "3 = '2 '6

  '4  =  '5 '20

  '5  =  '6 '30  -------  "5 = '3 '15 (RMP)

  '6  =  '7 '42

  '7  =  '8 '56  -------  "7 = '4 '28

  '8  =  '9 '72

  '9  =  '10 '90  ------  "9 = '5 '45 (RMP)

 '10  =  '11 '110

 '11  =  '12 '132  ----  "11 = '6 '66 (RMP)

 ...............................................

 

The first number pattern generates a pair of remarkable series:

 

  1 = '2 '2

         '2 = '6 '3

                 '3 = '12 '4

                          '4 = '20 '5

                                   '5 = '30 '6

                                            '6 = '42  ...

 

  1 = '2      '6      '12      '20      '30      '42  ...

  1 = '1x2    '2x3    '3x4     '4x5     '5x6     '6x7 ...

 

  1 = '1

  1 = '1x2 '2

  1 = '1x2 '2x3 '3

  1 = '1x2 '2x3 '3x4 '4

  1 = '1x2 '2x3 '3x4 '4x5 '5

  1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6

  1 = '1x2 '2x3 '3x4 '4x5 '5x6 '6x7 '7

  ........................................

 

  1 = '2 '2

         '2 = '3 '6

                 '6 = '7 '42

                         '42 = '43 1806

 

  1 = '1

  1 = '2 '2

  1 = '2 '3 '6

  1 = '2 '3 '7 '42

  1 = '2 '3 '7 '43 '1806

 

  1 = '2 '3 '7 '43 '1807 '3263443 ...

 

The equation "3 = '2 '6 can be used for many simple conversions:

 

  "9 equals '6  '18   (RMP)

 "15 equals '10 '30   (RMP)

 "21 equals '14 '42   (RMP)

 ..........................

 "87 equals '58 '174  (RMP)

 "93 equals '62 '186  (RMP)

 "99 equals '66 '198  (RMP)

 

The principle of the first number pattern may be expanded as follows:

 

  1 = '2 '2   = '3 '3 '3    = '4 '4 '4 '4     ...

 '2 = '3 '6   = '4 '8 '8    = '5 '10 '10 '10  ...

 '3 = '4 '12  = '5 '15 '15  = '6 '18 '18 '18  ...

 '4 = '5 '20  = '6 '24 '24  = '7 '28 '28 '28  ...

 '5 = '6 '30  = '7 '35 '35  = '8 '40 '40 '40  ...

 ................................................

 

Modifying the third column:

 

  1  =  '4  '4   '2  -----------  "1 = '2 '2 '1

 '2  =  '5  '10  '5

 '3  =  '6  '18  '9

 '4  =  '7  '28  '14

 '5  =  '8  '40  '20  ----------  "5 = '4 '20 '10

 '6  =  '9  '54  '27

 '7  =  '10 '70  '35

 '8  =  '11 '88  '44

 '9  =  '12 '108 '54  ----------  "9 = '6 '54 '27

'10  =  '13 '130 '65

'11  =  '14 '154 '77

'12  =  '15 '180 '90

'13  =  '16 '208 '104  --------  "13 = '8 '104 '52 (RMP)

 

A more demanding general pattern:

 

  "1  equals  '1  plus  '1x1 of 1     (2/1 = 1/1 + 1/1x1)

 

  "3  equals  '3  plus  '3x3 of 3     (2/3 = 1/3 + 3/3x3)  3=2+1

              '2  plus  '3x2 of 1     (2/3 = 1/2 + 1/2x3)

 

  "5  equals  '5  plus  '5x5 of 5     (2/5 = 1/5 + 5/5x5)  5=3+2

              '4  plus  '5x4 of 3     (2/5 = 1/4 + 3/4x5)  3=2+1

              '3  plus  '5x3 of 1     (2/3 = 1/3 + 1/3x5)

 

  "7  equals  '7  plus  '7x7 of 7     (2/7 = 1/7 + 7/7x7)  7=4+3

              '6  plus  '7x6 of 5     (2/7 = 1/6 + 5/6x7)  5=3+2

              '5  plus  '7x5 of 3     (2/7 = 1/5 + 3/5x7)  3=2+1

              '4  plus  '7x4 of 1     (2/7 = 1/4 + 1/4x7)

 

  "9  equals  '9  plus  '9x9 of 9

              '8  plus  '9x8 of 7

              '7  plus  '9x7 of 5

              '6  plus  '9x6 of 3

              '5  plus  '9x5 of 1

 

  ........................................................

 

All these and many more number patterns are contained in Milo Gardner's formulas:

 

       2/p - 1/a = (2a - p) / pa

       n/p - 1/a = (na - p) / pa

 

It was Milo Gardner who stimulated my interest in unit fractions, back in Spring 1997. I thank him again for his many patient e-mails.


Previous       Miscellaneous Index       Next